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Temperature dependence of η

Estimates from kinetic theory:

η ≈ 1

3

p̄

σ̄t(T )
; σ̄t(T ) =

1

3

∫ ∞

0

dg g7e−g2

∫

dθ sin2 θ σ

(

2g√
mβ

, θ

)

p̄ : Mean momentum, g : Scaled (w.r.t. pm.p.) relative momentum.
σ̄t(T ) : = T (= β−1)−dependent transport cross section.

Relativistic expressions are more complicated, but have similar content.

η ≈ #
p̄

σ̄t(T )
= #

~

λ σ̄t(T )
:=

action

physical volume

Above, λ is the thermal de-Broglie wavelength.

λ & η ∝
{

1√
mT

&
√

mT
σ̄t(T )

for NR
1
T

& T
σ̄t(T )

for UR
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Illustration with the delta-shell gas

Delta-shell potential : V (r) = −v δ(r −R)

Strength & extent : v & R Dilution parameter : nR3

Single dimesionless physical parameter : g = (2µv~2) R

Delta-shell scattering length asl and range parameter r0:

Cross section at low energies: σ = 4πa2
sl

asl =
Rg

g − 1
and r0 =

2R

3

(

1 +
1

g

)

Interesting cases :

g = →







1 unitarity limit
2l + 1 resonances
−∞ hard-sphere

The QM two-body problem analytically solvable (Gottfried, 1966).
For thermal and transport properties, see Postnikov & Prakash (2009).
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Asymptotic trends of delta-shell viscosity

η

η̃
→























(

1−g
g

)2 (

T/T̃
)1/2

for g 6= 1, 3 (non − resonant region)

6π
(

T/T̃
)3/2

for g = 1 (unitarity limit)

16
111

(

T/T̃
)1/2

for g = 3 (l = 1 resonance) .

Characteristic temperature:

T̃ ≡ 2π~
2

kBma2
or

T

T̃
=

(a

λ

)2
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Effective physical volumes

g mnD η mnD/η

1
3
√

2π

4

~

λ3

15
√

2π

16

~

λ3

4

5
= 0.80

3
9

104
√

2

~

λ R2

5

111
√

2

~

λ R2

999

520
= 1.92

6= 1, 3
3
√

2

16

~

λ a2
sl

5
√

2

32

~

λ a2
sl

6

5
= 1.20

Table 1: First order coefficients of diffusion (times mn),

shear viscosity, and their ratios for T � T̃ for select g′s .
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Expectations for relativistic particles

η ≈ # ~/(λ σ̄t(T ))

Unitary limit : For infinitely strong coupling, σ̄t(T ) → ∞,
but η remains finite as λ2 replaces σ̄t(T ). Consequently,

η = #
~

λ3
= # T 3

(see also, Danielewicz & Gyulassy (1985) & earlier works).
Pion gas: For both chiral pions (mπ = 0) and for massive pions treated
using current algebra, σ ∝ E2

c.m; thus, σt(T ) ∝ T 2. Hence,

η = #
~T

T 2
= #

~

T

With experimental cross sections featuring the ρ−resonance
prominently,

η = #
(
√
mπT to T )

σt(T )
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Example total cross sections: σ’s
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Viscosities for relativistic particles
First order transport coefficients:

η(1)
v = (9/8)kT [zh(γ − 5/3) + γ)]2/ω

(2)
0

η(1)
s = (5/8)kT h2/(ω

(2)
2 − z−1ω

(2)
1 + z−2ω

(2)
0 /3)

with the relativistic omega–integrals ω(s)
i given by

ω
(s)
i =

2πz3c

K2
2(z)

∫ ∞

0

dψ sinh7 ψ coshi ψKj(2z coshψ)

×
∫ π

0

dΘ sin Θσ(ψ,Θ)(1 − cos(s) Θ)

j = 5/2 + (−1)i/2, i = 0,±1,±2, · · · s = 2, 4, 6, · · ·

Rel. mom. g = mc sinhψ & and tot. mom. P = 2mc coshψ.

Reduced enthalpy h = K3(z)/K2(z) & ratio of sp. heats γ = cp/cv.
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Inelastic collisions & shear viscosity

Inelastic collisions can induce transitions to excited states or result in
new species of particles. For the general formalism, see e.g., Kapusta
(2008). In the nonrelativistic case (applicable to heavy resonances) of
i+ j → k + l (Wang et al., 1964),

1

η
=

8

5(πmkT )1/2

1

(
∑

i e
−εi)2

∑

i,j,k,l

e−εi−εj × (I1 + I2)

I1 =

∫ ∫ ∫

dγ e−γ2

γ7 σk,l
i,j (γ, θ, φ) sin3 θ dθ dφ

I2 =
2

3

∫ ∫ ∫

dγ e−γ2

γ5 ∆ε

(

1 − 3

2
sin2 θ

)

σk,l
i,j sin θ dθ dφ

εi =
Ei

kT
; ∆ε = εk + εl − εi − εj

γi,j =
( µi,j

2kT

)1/2
(

pj

mj

− pi

mi

)
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Role of inelastic collisions in bulk viscosity

Internal excitations and creation of new species of particles contribute to
bulk viscosity. For nonrelativistic particles (Wang et al., (1964)),

ηv =
nk2T

c2v

∑

l

c(l)v τl

For each species l, the relaxation time τ is

1

τ
= 2ncint

v

(

kT

πm

)1/2
1

(
∑

i e
−εi)2

∑

i,j,k,l

(∆ε)2 e−εi−εj × I

I =

∫ ∫ ∫

dγ e−γ2

γ3 σk,l
i,j (γ, θ, φ) sin θ dθ dφ

Generalization to the relativistic case in van Weert et al. (1973).
Numerical results for HIP under progress.
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Results for chiral & current algebra σ’s

ηsc
2 ' (0.25) ·

(

fπ

~c

)2 (

fπ

kT

)

fπc ' 7.5
(

100 MeV
kT

)

MeV fm−2 c
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Pion gas: results with experimental σ’s

Note T−dependence & convergence of results with experimental σ’s.
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Formulas for binary mixtures

Bulk viscosity:

η(1)
v =

kTM2n2

16ρ1ρ2

α2
2

ω
(1)
1200(σ12)

,

where α2 = x1[γ1 − γ]/[γ1 − 1].
Diffusion coefficient:

D(1) =
3MkT

16nm1m2

1
(

ω
(1)
1100 − 3(z1 + z2)−1ω

(1)
1200

) .

Shear viscosity:

η(1)
s =

ρ2k2T 2

10

(

c−1γ−1 + c1γ1

)

,

γ1 = −10c1h1/c
2 , γ−1 = −10c2h2/c

2 .
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Results for binary mixtures
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Formulas for relaxation times

From the relativistic generalization of Grad’s moment method, the
coefficients of the time derivatives of the various fluxes yield

τv =
ηv

nkT
α′

0 , τλ =
λTc−2

nkT
β′

1 , τη =
2ηs

nkT
γ′2 ,

where

α′
0 =

(10 − 7γ)ĥ+ z2(5/3 − γ)
[

(5/3 − γ)ĥ− γ
]2

β′
1 =

[

(γ − 1)/γĥ
] [

5(γ − 1)ĥ2/γ − z2
]

,

γ′2 = (3 + z2/2ĥ)/ĥ .
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Results for relaxation times

Note: The relaxation times converge at high T , but diverge at low T .
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Momentum relaxation times in a mixture

For the kth component,

τ η
k = 2ηsτ

′
k,η ≡ 2ηs

nkT

[

3 + (z2
k/2ĥk)

]

(
∑N

k=1 xkĥk)
.

Above, ηs is the shear viscosity of the mixture.

For shear flow,

Rη =
τ η
1

τ η
2

=
6 + z1K2(z1)/K3(z1)

6 + z2K2(z2)/K3(z2)
, zi =

mi

kT

For zi � 6, Rη → 1, whereas for zi � 6, Rη → m1/m2.
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Relaxation times for mixtures

Note: The ratio of nucleon to kaon relaxation times is nearly unity at
T = 200 MeV, whereas at T = 100 MeV, the ratio is nearly mN/mK .

20/21



Tasks to accomplish

I Extension to N-component mixtures; formalism ready
(calculations for hadronic mixtures await completion.)

I Comparison of Chapman-Enskog & Greek-Kubo calculations
(collaboration with Duke Univ. forged).

I Preparation of tables for use in hydrodynamic calculations
(require inputs from hydrodynamicists).
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